Course Code	Course Name	Credits
ILO7014	Design of Experiments	03

Objectives:

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

Outcomes: Learner will be able to...

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Sr. No	Detailed Contents	Hrs
01	Introduction	
	1.1 Strategy of Experimentation	
	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
02	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
	2.3 Hypothesis Testing in Multiple Regression	08
	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs	
	3.1 The 2^2 Design	
	3.2 The 2^3 Design	
03	3.3 The General2 ^k Design	07
03	3.4 A Single Replicate of the 2 ^k Design	
	3.5 The Addition of Center Points to the 2^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
04	Two-Level Fractional Factorial Designs	
	4.1 The One-Half Fraction of the 2 ^k Design	07
	4.2 The One-Quarter Fraction of the 2 ^k Design	
	4.3 The General 2 ^{k-p} Fractional Factorial Design	

	4.4 Resolution III Designs		
	4.5 Resolution IV and V Designs		
	4.6 Fractional Factorial Split-Plot Designs		
05	Response Surface Methods and Designs		
	5.1 Introduction to Response Surface Methodology	07	
	5.2 The Method of Steepest Ascent		
	5.3 Analysis of a Second-Order Response Surface		
	5.4 Experimental Designs for Fitting Response Surfaces		
06	Taguchi Approach		
	6.1 Crossed Array Designs and Signal-to-Noise Ratios	04	
	6.2 Analysis Methods		
	6.3 Robust design examples		

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss